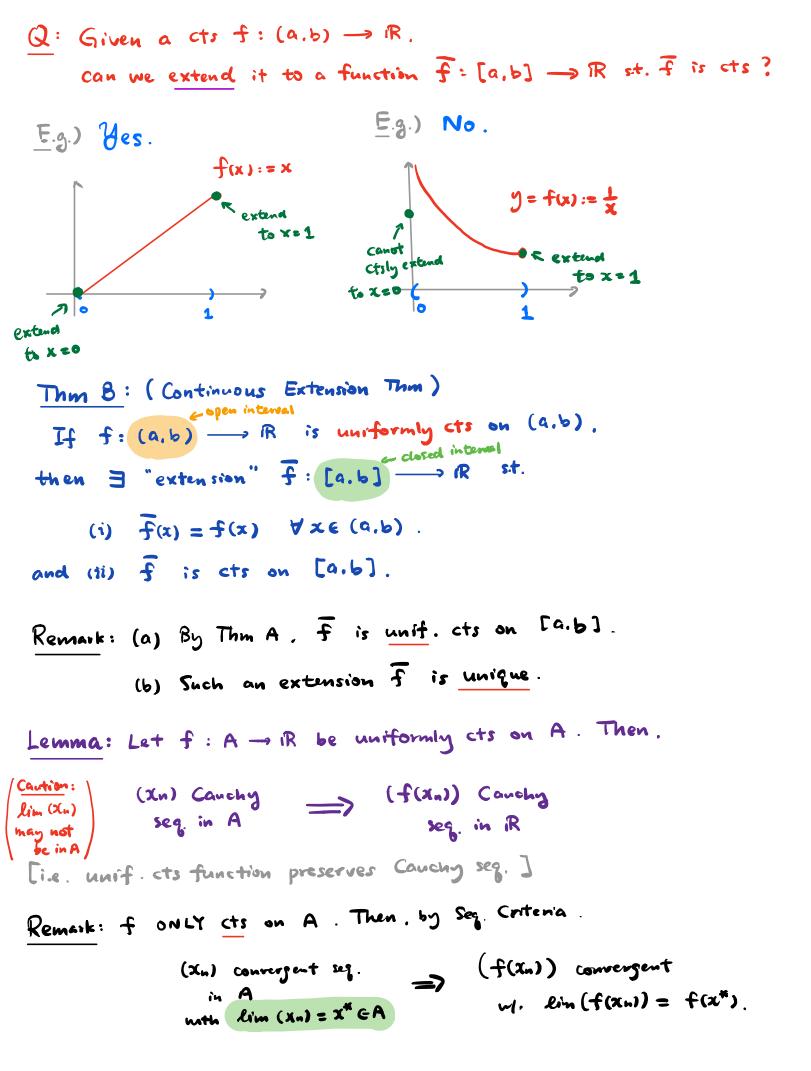
Note: NO CLASS NEXT FRIDAY. Review lecture on WED.	
Common Mistake: Let $f: A \longrightarrow \mathbb{R}$.	
$\lim_{x \to c} f(x) = L \qquad \forall x \in C$	S f is cts at C
¥ 2 20, ∃ 8 >0 st.	4830,38 0<34.
$ f(x) - L < \varepsilon$	lfas - fcs) < E
whenever x ∈ A	whenever teA
and o<1x-cl<8	and Ix-cl<8
() C needs to be a cluster pt.	() c needs Not be a cluster pt.
(CEA OR CEA)	BUT CEA.
2 f(c) may not be defined	3 f(c) has to be defined
3 We don't case the case $X = C$.	We CARE about X=C.
Def?: f: A -> IR is uniformly cts (on A)	
iff $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ st.	
If (w) - f(v) CE whenever u, v CA, Iu-v CS.	
(<=> "f is its at every ce A with the same & for ALL C.")	
Q1: When is f: A - R NOT unif. cts?	
Non-uniform Continuity Criteria:	
f:A -> IR is NOT <=> = = = = = = = = = = = = = = = = = =	
uniformly cts (on A) un-Vn1< 1 But If(un)-f(Vn)1> Eo VnGIN	
$\underline{E}_{(g)} f(x) = \frac{1}{x} \text{is Not unif. cts on } (0, \infty).$ $\underline{B}_{UT} \text{is cts on } (0, \infty).$	
Note: $f(x) = \frac{1}{x} \stackrel{\text{IS}}{=} \frac{unif}{1}$, cts on [a,b].	
(by Thin A below)	

Q2: When is
$$f: A \rightarrow R$$
 unif. cts? ? [Assume: A is an interval.]
Thum A: (Uniform Continuitz Thm.)
Let $f: [a,b] \rightarrow R$ be a function defined on a closed k bdd interval.
 f is cts on $[a,b] \implies f$ is unif. cts on $[a,b]$
(assumption
 f_{is} cts on $[a,b] \implies f$ is unif. cts on $[a,b]$.
Proof: By Contractiction.
Suppose NoT, i.e. f is cts But NoT uniformly cts on $[a,b]$.
 $By Non-uniform continuity criteria.
 $\exists E_{0} > 0$, seq. $(U_{0}), (V_{0})$ in $[a,b]$ st.
(M) [U_{0} - V_{0}] < $\frac{1}{V_{0}}$ But $1f(U_{0}) - f(V_{0})$] $\geq E_{0}$ $\forall n \in \mathbb{N}$.
 $By Bolzano-Weitzsterars \exists convergent subseq. $(U_{0,k})$ of (U_{0}) .
 $Say Lim (U_{0,k}) = :U^{0} \in [a, b]$
 $Cloim: Rig (V_{0,k}) = U^{0}$
 $Pf of Claim: Rig (#)$, $|U_{0,k} - V_{0,k}| < \frac{1}{m_{k}}$ $\forall k \in \mathbb{N}$
Take $k \neq \infty$, $N_{k} \rightarrow \infty$, by Squeete Thum for $Sa_{k} - R_{kino}$ $(V_{0,k}) = U^{*}$.
 $|f(U_{0,k}) - f(V_{0,k})| \geq E_{0}$ $\forall k \in \mathbb{N}$
As f is cts on $[a,b]$, in particular, at $x \equiv U^{*}$, take $k \neq \infty$ above
 $0 = |f(u^{*}) - f(u^{*})| = \lim_{k \to \infty} |f(U_{0,k}) - f(V_{0,k})| \geq E_{0} > 0$$$

- Contradiction ::



Let [2 > 0. · By uniform continuity of f. 3 S = S(E) > 0 st. u.v E A , |u - V | < 8 whenever |f(u) - f(v) | < E seq in A · Since (Xn) is (auchy: for this 8>0, 3H = H(S) E IN st Vn.m 3 H | Xn - Xm | < S By (**), $|f(x_n) - f(x_m)| < \varepsilon$ Y n, m z H So, (f(Xn)) is Cauchy. Froof of Thm B: ••• × Claim: lim f(x) exists. X-)a Given f: (a.b) - R cts. Pf of Claim: By Sez. criteria, it suffices to show :> if such an extension F: [a,b] →1R exists: ILER sit for any seq. (Xn) in (9.6) them st lim (xn) = a, we have lim (f(xn)) = L $\overline{f}(a) = \lim_{x \to a} \overline{f}(x)$ same L detine (= lim f(x) Step 1 : Find one such L. for ALL seq Choose a seq. (Xn) = (a + 1) Vnen, (Xn) $\overline{f}(b) = \lim_{x \to b} \overline{f}(x)$ exists? [Note: In E (a.b) & n large.] define 5 = ling f(x) Since (In) - a, it's Cauchy. By Lemma, (f(xn)) is Cauchy By Cauchy Criteria = LGR st lim(f(In)) = L. Cantion: This (may not work for other sog (In') - a.